ОПТИМИЗАЦИОННОЕ МОДЕЛИРОВАНИЕ

Аборнев Сергей Михайлович, доцент кафедры информатики и ИКТ КГБОУ АКИПКРО, к.ф.м.н., доцент, abornev@barnaul.ru

Аннотация. В статье описана технология решения линейной оптимизационной задачи средствами электронных таблиц. Работа предназначена для учителей информатики и ИКТ общеобразовательных учреждений.

В процессе обучения перед учащимися часто возникают задачи, в которых цель может быть достигнута разными путями, но необходимо определить наилучший из них. Такие задачи называется оптимизационными.

Понятие «лучший» начинает что-либо означать тогда, когда назван количественный показатель или критерий качества принимаемого решения. Например, изделие А лучше изделия В с точки зрения затрат материала; система С лучше системы D по показателю надежности и т.п. Вот почему получение наилучших вариантов возможно только при количественном описании предметной области, т.е. на основе математической модели.

Методология анализа сложных систем, их математическое моделирование и нахождение на этой основе наилучших (оптимальных) решений в общем виде изучается в науке «исследование операций». В рамках этого общего направления изучаются и математические «методы оптимизации». Последнее название применяют для методов нахождения экстремумов функций, когда математическая модель задачи уже сформулирована. Среди оптимизационных задач в теории принятия решений наиболее известна задача линейного программирования, которая и будет рассмотрена в данной статье.

Особенности математического моделирования задач принятия решения

Математическое программирование - область математики, разрабатывающая теорию и численные методы решения многомерных экстремаль-

ных задач с ограничениями, т. е. задач на экстремум функции многих переменных с ограничениями на область изменения этих переменных.

Линейное программирование - раздел математического программирования, применяемый при разработке методов отыскания экстремума линейных функций нескольких переменных при линейных дополнительных ограничениях, налагаемых на переменные.

Вот некоторые примеры задач линейного программирования:

- задача об использовании ресурсов (планирование производства);
- задача составления рациона (задача о диетах, смесях);
- задача об использовании мощностей;
- транспортная задача.

Рассмотрим простой пример. Для откорма животных используется три вида комбикорма: А, В и С. Каждому животному в сутки требуется не менее 800 г. жиров, 700 г. белков и 900 г. углеводов, но не более 5 кг сухой смеси. Содержание в 1 кг. каждого вида комбикорма жиров, белков и углеводов (граммы) приведено в таблице:

Содержание в 1 кг	Комбикорм				
содержание в т кг	A	В	С		
Жиры	320	240	300		
Белки	170	130	110		
Углеводы	380	440	450		
Стоимость 1 кг	31	23	20		

Вопрос: сколько килограммов каждого вида комбикорма нужно каждому животному в сутки, чтобы полученная смесь имела минимальную стоимость? Это типичная задача линейного программирования. Построим математическую модель задачи:

Обозначим x_1 , x_2 , x_3 — искомые количества комбикормов A, B и C. Тогда стоимость смеси выражается функцией $F(x_1, x_2, x_3)$, которую надо минимизировать

$$F = 31 x_1 + 23 x_2 + 20 x_3 \rightarrow min$$
 (1.1)

Ограничения на количество ингредиентов:

$$\begin{cases}
320x_{1} + 240x_{2} + 300x_{3} \geq 800, \\
170x_{1} + 130x_{2} + 110x_{3} \geq 700, \\
380x_{1} + 440x_{2} + 450x_{3} \geq 900, \\
x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0. \\
x_{1} + x_{2} + x_{3} \leq 5
\end{cases} (1.2)$$

Функция F (1.1) называется целевой функцией, а система (1.2) — системой ограничений. Задача линейного программирования заключается в том, чтобы найти такое решение системы $X = (x_1, x_2, x_3)$, при котором линейная функция F (1.1) принимает оптимальное (в данном случае — минимальное) значение.

Разработаны эффективные математические методы решения этого класса задач, в которых, однако, зачастую существуют ограничения на количество переменных. С ростом мощности компьютеров необходимость применения этих методов отпала, и большое распространение получили методы перебора, к рассмотрению которых мы и переходим.

Технология решения линейной оптимизационной задачи средствами электронных таблиц

Электронные таблицы дают возможность пользователю решать оптимизационные задачи различного типа без затрат времени на описание математической модели. Если пользователь хорошо понимает сущность стоящей перед ним задачи, её тип и метод решения, а также владеет специальным инструментарием электронной таблицы, то решение представляет собой удобную и эффективную процедуру.

На этапе ознакомления с условиями задачи и планирования решения, после ввода исходных данных, в диалоге с *Excel* пользователь указывает ячейку целевой функции и её экстремум, задает изменяемые ячейки, устанавливает ограничения.

Этот процесс в сущности и является описанием задачи, в результате которого в *Excel* как бы по умолчанию создается математическая модель конкретной оптимизационной проблемы, автоматически поддерживаемая имеющимися программными средствами. Если задача описана корректно, то после инициализации расчета будет получено решение, в противном случае будет выдано сообщение о невозможности получения решения.

Задачи, решаемые с помощью оптимизатора, имеют три характерных признака: наличие *целевой* ячейки, *изменяемых* ячеек, *ограничивающих* ячеек. В формуле целевой ячейки должны быть сделаны ссылки на одну или более *изменяемых* ячеек, от значений которых зависит результат. Они могут быть названы также *неизвестными* или *переменными для решения*. Программа *Поиск решения* устанавливает значения изменяемых ячеек так, чтобы найти для формулы целевой ячейки оптимальное решение.

Ограничивающих ячеек должно быть не менее одной на каждую изменяемую ячейку. Может существовать и некоторое количество дополнительных ячеек ограничений, например, ограничение по объему ресурса, по спросу, ограничения на вид переменных (целые, неотрицательные) и т.д.

В технологическом процессе решения линейной оптимизационной задачи с помощью Excel выделяются три типовых этапа:

- 1. *Подготовительный* подготовка табличной модели до обращения к диалоговому окну оптимизатора, ввод данных и формул.
- 2. *Основной* диалог с оптимизатором для определения целевой ячейки, экстремума, изменяемых ячеек, ограничений.
- 3. *Заключительный* сохранение результатов текущего решения и сохранение созданной модели для будущих решений.

Вернемся к задаче, рассмотренной нами в главе 1. На рис.1 (в верхней части) показан результат подготовительного этапа: создана и заполнена таблица данных, введены расчетные формулы (для наглядности формулы показаны в самих ячейках). Целевая ячейка (G2), выполняющая роль целевой функции, содержит ссылки на изменяемые (B7, C7, D7), которые играют роль переменных x_1 , x_2 , x_3 . Нули в этих ячейках условны — можно написать любые значения, можно оставить их пустыми. В этих же ячейках в будущем появится оптимальный результат (решение).

Запускаем оптимизатор (программа *Поиск решения*). В Excel 2007 эта программа находится в пункте меню *Данные* (в более ранних версиях эта программа может быть в меню *Сервис*).

Если в меню *Данные* программы *Поиск решения* нет, то её надо установить, выбрав в *Надстройках*. Для этого щелкнем правой кнопкой мыши на строке меню, далее выберем *Настройки панели быстрого доступа...*. В появившемся окне *Параметры Excel* выбираем пункт *Надстройки*. В правой части окна появится список активных и неактивных надстроек. Нажав на кнопку *Перейти...* в нижней части окна, откроем окно *Надстройки* со списком доступных надстроек. Отмечаем *Поиск решения*, после чего эта программа будет доступна в меню *Данные*.

Далее в открывшемся окне *Поиск решения* отмечаем адрес целевой ячейки (G2), желаемый экстремум (минимум), указываем диапазон изменяемых ячеек (B7:D7) (рис.1). Для начала ввода ограничений нажимаем *Добавить*. Откроется новое окно *Добавление ограничений*, куда мы последовательно вводим адрес ограничиваемой ячейки (напр., F3), логическое выражение (=>) и адрес ограничивающей ячейки (E3). Иногда можно указывать диапазон ограничиваемых ячеек (рис. 2).

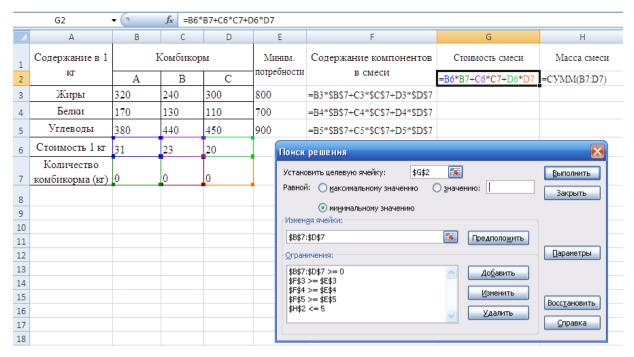


Рис. 1. Вид окна Excel перед нажатием кнопки «Выполнить».

Добавление ограничения	×
Ссылка на ячейку: \$F\$3 >=	Ограничение:
ОК Отмена	До <u>б</u> авить <u>С</u> правка
Добавление ограничения	×
Ссылка на ячейку: \$B\$7:\$D\$7 >=	Ограничение: 0
ОК Отмена	До <u>б</u> авить <u>С</u> правка

Рис. 2. Добавление ограничений.

После проверки всех установок в окне *Поиск решения* активируем кнопку *Выполнить*. После этого окно Excel приобретает вид, показанный на рис. 3 (в ячейках с формулами здесь отображены результаты). В изменяемых ячейках появилось оптимальное решение, соответствующее минимуму целевой функции.

G2 ▼											
	А	В	С	D	Е	F	G	Н	I	J	
1	Содержание в 1	Комбикорі		орм Миним. потребнос		Содержание компонентов	Стоимость смеси	Масса смеси			
2	KT	A	В	C	TH	в смеси	125	5			
3	Жиры	320	240	300	800	1300					
4	Белки	170	130	110	700	700					
5	Углеводы	380	440	450	900	2125					
6	Стоимость 1 кг	31	23	20							
7	Количество комбикорма (кг)	1,25	3,75	0	Результаты поиска решения Решение найдено. Все ограничения и условия оптимальности выполнены. Тип отчета Результаты Устойчивость Пределы						
8											
9											
10					○ Восстановить исходные значения						
11					ОК Отмена Сохранить сценарий Справка						
12					ОК Отмена Со <u>х</u> ранить сценарий <u>С</u> правка						
13											

Рис. 3. Вид окна Excel после нажатия кнопки «Выполнить».

Решением является тройка чисел (1,25; 3,75; 0) - количество килограммов комбикорма каждого вида, при котором стоимость смеси минимальна (125). Далее решаем вопрос о необходимости сохранения решения и типе отчета. Сохраненный отчет автоматически запишется на новый рабочий лист.

Литература.

- 1. «Информационные системы менеджмента. Основные аналитические технологии в поддержке принятия решений», Г.М. Устинова, учебное пособие, СПб, Издательство «ДиаСофтЮП», 2000, 357с.
- 2. «Исследование операций в экономике», учебное пособие, под ред. проф. Н.Ш. Кремера, Москва, ЮНИТИ, 1997, 407с.
- **3.** Сайт Википедия. [Электронный ресурс]. Режим доступа: http://ru.wikipedia.org/wiki/Категория:алгоритмы оптимизации
- 4. Угринович Н.Д. «Исследование информационных моделей», учебное пособие, Москва, Бином.Лаборатория знаний, 2006, 200с.
- 5. Федеральный государственный образовательный стандарт основного общего образования. [Электронный ресурс]. Режим доступа: http://standart.edu.ru/attachment.aspx?id=370